Onboarding: inicia tu experiencia de aprendizaje
Únete a una sesión vía Zoom, diseñada para darte la bienvenida y brindarte todos los elementos que conforman el ecosistema de The Learning Gate, desde la navegación en la plataforma, la comunidad, los diferentes caminos de aprendizaje, los Success Partners que te darán acompañamiento, un espacio para resolver tus dudas y herramientas útiles que podrás aprovechar para potenciar tu experiencia de aprendizaje.
M1
Ingeniería de Características
10 Hrs.
1. Identificar las metodologías para la selección de características observables más relevantes para la visualización o para el mejoramiento la exactitud y/o precisión de un modelo de datos.
2. Diseñar las características observables más relevantes para la visualización o para el mejoramiento de la exactitud y/o precisión de un modelo de datos.
M2
Aprendizaje No Supervisado
10 Hrs.
1. Interpretar la configuración que se ha utilizado para el desarrollo de modelos inteligentes no supervisado de datos utilizando scikit-learn de Python, poniendo especial atención en la selección adecuada del número de agrupaciones, que cumplan lo mejor posible con los requerimientos de la tarea requerida.
2. Crear modelos inteligentes no supervisado de datos utilizando scikit-learn de Python, seleccionando el número de agrupaciones adecuadas y analizando la efectividad del modelo utilizando medidas de calidad, que cumplan lo mejor posible con los requerimientos de la tarea requerida.
M3
Aprendizaje Supervisado
10 Hrs.
1. Interpreta la configuración utilizada en el desarrollo de los modelos inteligentes supervisado de datos utilizando scikit-learn de Python; poniendo especial atención en la selección adecuada del modelo inteligente, precisión del modelo, que cumplan lo mejor posible con los requerimientos de la tarea requerida.
2. Crear modelos inteligentes supervisado de datos utilizando scikit-learn de Python; seleccionando el modelo adecuado y analizando la exactitud, precisión del modelo, que cumplan lo mejor posible con los requerimientos de la tarea requerida.
M4
Visualización con Machine Learning
10 Hrs.
1. Examinar los resultados de las visualizaciones de modelos inteligentes para el desarrollo de modelos de datos más exactos y/o precisos, que cumplan con los requerimientos de la necesidad del problema a resolver.
2. Utilizar herramientas visuales de máquinas inteligentes para el desarrollo de modelos de datos más exactos y/o precisos, que cumplan con los requerimientos de la necesidad del problema a resolver
M5
Analítica de Texto
10 Hrs.
1. Interpreta la configuración utilizada en el desarrollo de los modelos inteligentes supervisado de texto utilizando Python; poniendo especial atención en la selección adecuada del modelo inteligente, precisión del modelo, que cumplan lo mejor posible con los requerimientos de la tarea requerido
2. Crear modelos inteligentes supervisado de datos de texto utilizando la plataforma máquinas inteligentes en Python; seleccionando el modelo adecuado y analizando la exactitud o precisión del modelo, que cumplan lo mejor posible con los requerimientos de la tarea requerida.
M6
Analítica de Redes Sociales
10 Hrs.
1. Interpretar modelos de redes sociales utilizando la NetworkX en Python; analizando su robustez, encontrando las personas que más se comunican, así como los líderes de las conversaciones en una red social.
2. Crear modelos de redes de sociales utilizando la NetworkX en Python; analizar la robustez de las redes, encontrar las personas que mas se comunican, así como los líderes de las conversaciones en una red social.